
13

CHAPTER 2

Netlink Sockets

Chapter 1 discusses the roles of the Linux kernel networking subsystem and the three layers in which it operates.
The netlink socket interface appeared first in the 2.2 Linux kernel as AF_NETLINK socket. It was created as a more
flexible alternative to the awkward IOCTL communication method between userspace processes and the kernel.
The IOCTL handlers cannot send asynchronous messages to userspace from the kernel, whereas netlink sockets can.
In order to use IOCTL, there is another level of complexity: you need to define IOCTL numbers. The operation model
of netlink is quite simple: you open and register a netlink socket in userspace using the socket API, and this netlink
socket handles bidirectional communication with a kernel netlink socket, usually sending messages to configure
various system settings and getting responses back from the kernel.

This chapter describes the netlink protocol implementation and API and discusses its advantages and
drawbacks. I also talk about the new generic netlink protocol, discuss its implementation and its advantages, and give
some illustrative examples using the libnl library. I conclude with a discussion of the socket monitoring interface.

The Netlink Family
The netlink protocol is a socket-based Inter Process Communication (IPC) mechanism, based on RFC 3549,
“Linux Netlink as an IP Services Protocol.” It provides a bidirectional communication channel between userspace and
the kernel or among some parts of the kernel itself. Netlink is an extension of the standard socket implementation.
The netlink protocol implementation resides mostly under net/netlink, where you will find the following four files:

•฀ af_netlink.c

•฀ af_netlink.h

•฀ genetlink.c

•฀ diag.c

Apart from them, there are a few header files. In fact, the af_netlink module is the most commonly used; it provides the
netlink kernel socket API, whereas the genetlink module provides a new generic netlink API with which it should be easier
to create netlink messages. The diag monitoring interface module (diag.c) provides an API to dump and to get information
about the netlink sockets. I discuss the diag module later in this chapter in the section “Socket monitoring interface.”

I should mention here that theoretically netlink sockets can be used to communicate between two userspace
processes, or more (including sending multicast messages), though this is usually not used, and was not the
original goal of netlink sockets. The UNIX domain sockets provide an API for IPC, and they are widely used for
communication between two userspace processes.

Netlink has some advantages over other ways of communication between userspace and the kernel. For example,
there is no need for polling when working with netlink sockets. A userspace application opens a socket and then calls
recvmsg(), and enters a blocking state if no messages are sent from the kernel; see, for example, the rtnl_listen()
method of the iproute2 package (lib/libnetlink.c). Another advantage is that the kernel can be the initiator of

CHAPTER 2 ■ NETLINK SOCKETS

14

sending asynchronous messages to userspace, without any need for the userspace to trigger any action (for example,
by calling some IOCTL or by writing to some sysfs entry). Yet another advantage is that netlink sockets support
multicast transmission.

You create netlink sockets from userspace with the socket() system call. The netlink sockets can be SOCK_RAW
sockets or SOCK_DGRAM sockets.

Netlink sockets can be created in the kernel or in userspace; kernel netlink sockets are created by the
 netlink_kernel_create() method; and userspace netlink sockets are created by the socket() system call. Creating
a netlink socket from userspace or from the kernel creates a netlink_sock object. When the socket is created from
userspace, it is handled by the netlink_create() method. When the socket is created in the kernel, it is handled by
__netlink_kernel_create(); this method sets the NETLINK_KERNEL_SOCKET flag. Eventually both methods call
__netlink_create() to allocate a socket in the common way (by calling the sk_alloc() method) and initialize it.
Figure 2-1 shows how a netlink socket is created in the kernel and in userspace.

Figure 2-1. Creating a netlink socket in the kernel and in userspace

You can create a netlink socket from userspace in a very similar way to ordinary BSD-style sockets, like this, for
example: socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE). Then you should create a sockaddr_nl object (instance
of the netlink socket address structure), initialize it, and use the standard BSD sockets API (such as bind(), sendmsg(),
recvmsg(), and so on). The sockaddr_nl structure represents a netlink socket address in userspace or in the kernel.

Netlink socket libraries provide a convenient API to netlink sockets. I discuss them in the next section.

Netlink Sockets Libraries
I recommend you use the libnl API to develop userspace applications, which send or receive data by netlink sockets.
The libnl package is a collection of libraries providing APIs to the netlink protocol-based Linux kernel interfaces.
The iproute2 package uses the libnl library, as mentioned. Besides the core library (libnl), it includes support for the
generic netlink family (libnl-genl), routing family (libnl-route), and netfilter family (libnl-nf). The package was

CHAPTER 2 ■ NETLINK SOCKETS

15

developed mostly by Thomas Graf (www.infradead.org/~tgr/libnl/). I should mention here also that there is a
library called libmnl, which is a minimalistic userspace library oriented to netlink developers. The libmnl library
was mostly written by Pablo Neira Ayuso, with contributions from Jozsef Kadlecsik and Jan Engelhardt.
(http://netfilter.org/projects/libmnl/).

The sockaddr_nl Structure
Let’s take a look at the sockaddr_nl structure, which represents a netlink socket address:

struct sockaddr_nl {
 __kernel_sa_family_t nl_family; /* AF_NETLINK */
 unsigned short nl_pad; /* zero */
 __u32 nl_pid; /* port ID */
 __u32 nl_groups; /* multicast groups mask */
};

(include/uapi/linux/netlink.h)

•฀ nl_family: Should always be AF_NETLINK.

•฀ nl_pad: Should always be 0.

•฀ nl_pid: The unicast address of a netlink socket. For kernel netlink sockets, it should be 0.
Userspace applications sometimes set the nl_pid to be their process id (pid). In a userspace
application, when you set nl_pid explicitly to 0, or don’t set it at all, and afterwards call
bind(), the kernel method netlink_autobind() assigns a value to nl_pid. It tries to assign
the process id of the current thread. If you’re creating two sockets in userspace, then you are
responsible that their nl_pids are unique in case you don't call bind. Netlink sockets are not
used only for networking; other subsystems, such as SELinux, audit, uevent, and others, use
netlink sockets. The rtnelink sockets are netlink sockets specifically used for networking; they
are used for routing messages, neighbouring messages, link messages, and more networking
subsystem messages.

•฀ nl_groups: The multicast group (or multicast group mask).

The next section discusses the iproute2 and the older net-tools packages. The iproute2 package is based upon
netlink sockets, and you’ll see an example of using netlink sockets in iproute2 in the section “Adding and deleting a
routing entry in a routing table”, later in this chapter. I mention the net-tools package, which is older and might be
deprecated in the future, to emphasize that as an alternative to iproute2, it has less power and less abilities.

Userspace Packages for Controlling TCP/IP Networking
There are two userspace packages for controlling TCP/IP networking and handling network devices: net-tools and
iproute2. The iproute2 package includes commands like the following:

•฀ ip: For management of network tables and network interfaces

•฀ tc: For traffic control management

•฀ ss: For dumping socket statistics

•฀ lnstat: For dumping linux network statistics

•฀ bridge: For management of bridge addresses and devices

http://www.infradead.org/~tgr/libnl/
http://netfilter.org/projects/libmnl/

CHAPTER 2 ■ NETLINK SOCKETS

16

The iproute2 package is based mostly on sending requests to the kernel from userspace and getting replies back
over netlink sockets. There are a few exceptions where IOCTLs are used in iproute2. For example, the ip tuntap
command uses IOCTLs to add/remove a TUN/TAP device. If you look at the TUN/TAP software driver code, you’ll
find that it defines some IOCTL handlers, but it does not use the rtnetlink sockets. The net-tools package is based on
IOCTLs and includes known commands like these:

•฀ ifconifg

•฀ arp

•฀ route

•฀ netstat

•฀ hostname

•฀ rarp

Some of the advanced functionalities of the iproute2 package are not available in the net-tools package.
The next section discusses kernel netlink sockets—the core engine of handling communication between

userspace and the kernel by exchanging netlink messages of different types. Learning about kernel netlink sockets is
essential for understanding the interface that the netlink layer provides to userspace.

Kernel Netlink Sockets
You create several netlink sockets in the kernel networking stack. Each kernel socket handles messages of different
types: so for example, the netlink socket, which should handle NETLINK_ROUTE messages, is created in
rtnetlink_net_init():

static int __net_init rtnetlink_net_init(struct net *net) {
 ...
 struct netlink_kernel_cfg cfg = {
 .groups = RTNLGRP_MAX,
 .input = rtnetlink_rcv,
 .cb_mutex = &rtnl_mutex,
 .flags = NL_CFG_F_NONROOT_RECV,
 };

 sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
 ...
}

Note that the rtnetlink socket is aware of network namespaces; the network namespace object (struct net)
contains a member named rtnl (rtnetlink socket). In the rtnetlink_net_init() method, after the rtnetlink socket
was created by calling netlink_kernel_create(), it is assigned to the rtnl pointer of the corresponding network
namespace object.

CHAPTER 2 ■ NETLINK SOCKETS

17

Let’s look in netlink_kernel_create() prototype:

struct sock *netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg)

The first parameter (•฀ net) is the network namespace.

The second parameter is the netlink protocol (for example, NETLINK_ROUTE for rtnetlink •฀
messages, or NETLINK_XFRM for IPsec or NETLINK_AUDIT for the audit subsystem). There
are over 20 netlink protocols, but their number is limited by 32 (MAX_LINKS). This is one of
the reasons for creating the generic netlink protocol, as you’ll see later in this chapter. The full
list of netlink protocols is in include/uapi/linux/netlink.h.

The third parameter is a reference to •฀ netlink_kernel_cfg, which consists of optional
parameters for the netlink socket creation:

struct netlink_kernel_cfg {
 unsigned int groups;
 unsigned int flags;
 void (*input)(struct sk_buff *skb);
 struct mutex *cb_mutex;
 void (*bind)(int group);
};
(include/uapi/linux/netlink.h)

The groups member is for specifying a multicast group (or a mask of multicast groups). It’s possible to join a
multicast group by setting nl_groups of the sockaddr_nl object (you can also do this with the nl_join_groups()
method of libnl). However, in this way you are limited to joining only 32 groups. Since kernel version 2.6.14,
you can use the NETLINK_ADD_MEMBERSHIP/ NETLINK_DROP_MEMBERSHIP socket option to join/leave
a multicast group, respectively. Using the socket option enables you to join a much higher number of groups.
The nl_socket_add_memberships()/nl_socket_drop_membership() methods of libnl use this socket option.

The flags member can be NL_CFG_F_NONROOT_RECV or NL_CFG_F_NONROOT_SEND.
When CFG_F_NONROOT_RECV is set, a non-superuser can bind to a multicast group; in netlink_bind() there

is the following code:

static int netlink_bind(struct socket *sock, struct sockaddr *addr,
 int addr_len)
 {
 ...
 if (nladdr->nl_groups) {
 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
 return -EPERM;
 }

For a non-superuser, if the NL_CFG_F_NONROOT_RECV is not set, then when binding to a multicast group the
netlink_capable() method will return 0, and you get –EPRM error.

When the NL_CFG_F_NONROOT_SEND flag is set, a non-superuser is allowed to send multicasts.
The input member is for a callback; when the input member in netlink_kernel_cfg is NULL, the kernel socket

won’t be able to receive data from userspace (sending data from the kernel to userspace is possible, though). For the
rtnetlink kernel socket, the rtnetlink_rcv() method was declared to be the input callback; as a result, data sent from
userspace over the rtnelink socket will be handled by the rtnetlink_rcv() callback.

CHAPTER 2 ■ NETLINK SOCKETS

18

For uevent kernel events, you need only to send data from the kernel to userspace; so, in lib/kobject_uevent.c,
you have an example of a netlink socket where the input callback is undefined:

static int uevent_net_init(struct net *net)
{
 struct uevent_sock *ue_sk;
 struct netlink_kernel_cfg cfg = {
 .groups = 1,
 .flags = NL_CFG_F_NONROOT_RECV,
 };

 ...
 ue_sk->sk = netlink_kernel_create(net, NETLINK_KOBJECT_UEVENT, &cfg);
 ...
}
(lib/kobject_uevent.c)

The mutex (cb_mutex) in the netlink_kernel_cfg object is optional; when not defining a mutex, you use the
default one, cb_def_mutex (an instance of a mutex structure; see net/netlink/af_netlink.c). In fact, most netlink
kernel sockets are created without defining a mutex in the netlink_kernel_cfg object. For example, the uevent
kernel netlink socket (NETLINK_KOBJECT_UEVENT), mentioned earlier. Also, the audit kernel netlink socket
(NETLINK_AUDIT) and other netlink sockets don’t define a mutex. The rtnetlink socket is an exception—it uses the
rtnl_mutex. Also the generic netlink socket, discussed in the next section, defines a mutex of its own: genl_mutex.

The netlink_kernel_create() method makes an entry in a table named nl_table by calling the netlink_insert()
method. Access to the nl_table is protected by a read write lock named nl_table_lock; lookup in this table is done by the
netlink_lookup() method, specifying the protocol and the port id. Registration of a callback for a specified message type
is done by rtnl_register(); there are several places in the networking kernel code where you register such callbacks.
For example, in rtnetlink_init() you register callbacks for some messages, like RTM_NEWLINK (creating a new link),
RTM_DELLINK (deleting a link), RTM_GETROUTE (dumping the route table), and more. In net/core/neighbour.c, you
register callbacks for RTM_NEWNEIGH messages (creating a new neighbour), RTM_DELNEIGH (deleting a neighbour),
RTM_GETNEIGHTBL message (dumping the neighbour table), and more. I discuss these actions in depth in
Chapters 5 and 7. You also register callbacks to other types of messages in the FIB code (ip_fib_init()), in the multicast
code (ip_mr_init()), in the IPv6 code, and in other places.

The first step you should take to work with a netlink kernel socket is to register it. Let’s take a look at the
rtnl_register() method prototype:

extern void rtnl_register(int protocol, int msgtype,
 rtnl_doit_func,
 rtnl_dumpit_func,
 rtnl_calcit_func);

The first parameter is the protocol family (when you don't aim at a specific protocol, it is PF_UNSPEC); you’ll
find a list of all the protocol families in include/linux/socket.h.

The second parameter is the netlink message type, like RTM_NEWLINK or RTM_NEWNEIGH. These are
private netlink message types which the rtnelink protocol added. The full list of message types is in
include/uapi/linux/rtnetlink.h.

The last three parameters are callbacks: doit, dumpit, and calcit. The callbacks are the actions you want to
perform for handling the message, and you usually specify only one callback.

The doit callback is for actions like addition/deletion/modification; the dumpit callback is for retrieving information,
and the calcit callback is for calculation of buffer size. The rtnetlink module has a table named rtnl_msg_handlers. This
table is indexed by protocol number. Each entry in the table is a table in itself, indexed by message type. Each element
in the table is an instance of rtnl_link, which is a structure that consists of pointers for these three callbacks. When
registering a callback with rtnl_register(), you add the specified callback to this table.

CHAPTER 2 ■ NETLINK SOCKETS

19

Registering a callback is done like this, for example: rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink,
NULL, NULL) in net/core/rtnetlink.c. This adds rtnl_newlink as the doit callback for RTM_NEWLINK messages
in the corresponding rtnl_msg_handlers entry.

Sending of rtnelink messages is done with rtmsg_ifinfo(). For example, in dev_open() you create a new link,
so you call: rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); in the rtmsg_ifinfo() method, first the
nlmsg_new() method is called to allocate an sk_buff with the proper size. Then two objects are created: the netlink
message header (nlmsghdr) and an ifinfomsg object, which is located immediately after the netlink message header.
These two objects are initialized by the rtnl_fill_ifinfo() method. Then rtnl_notify() is called to send the packet;
sending the packet is actually done by the generic netlink method, nlmsg_notify() (in net/netlink/af_netlink.c).
Figure 2-2 shows the stages of sending rtnelink messages with the rtmsg_ifinfo() method.

Figure 2-2. Sending of rtnelink messages with the rtmsg_ifinfo() method

The next section is about netlink messages, which are exchanged between userspace and the kernel. A netlink
message always starts with a netlink message header, so your first step in learning about netlink messages will be to
study the netlink message header format.

The Netlink Message Header
A netlink message should obey a certain format, specified in RFC 3549, “Linux Netlink as an IP Services Protocol”,
section 2.2, “Message Format.” A netlink message starts with a fixed size netlink header, and after it there is a payload.
This section describes the Linux implementation of the netlink message header.

The netlink message header is defined by struct nlmsghdr in include/uapi/linux/netlink.h:

struct nlmsghdr
{
 __u32 nlmsg_len;
 __u16 nlmsg_type;

CHAPTER 2 ■ NETLINK SOCKETS

20

 __u16 nlmsg_flags;
 __u32 nlmsg_seq;
 __u32 nlmsg_pid;
};
(include/uapi/linux/netlink.h)

Every netlink packet starts with a netlink message header, which is represented by struct nlmsghdr. The length
of nlmsghdr is 16 bytes. It contains five fields:

•฀ nlmsg_len is the length of the message including the header.

•฀ nlmsg_type is the message type; there are four basic netlink message header types:

NLMSG_NOOP: No operation, message must be discarded.•฀

NLMSG_ERROR: Error occurred.•฀

NLMSG_DONE: A multipart message is terminated.•฀

NLMSG_OVERRUN: Overrun notification: error, data was lost.•฀

(include/uapi/linux/netlink.h)

However, families can add netlink message header types of their own. For example,
the rtnetlink protocol family adds message header types such as RTM_NEWLINK,
RTM_DELLINK, RTM_NEWROUTE, and a lot more (see include/uapi/linux/
rtnetlink.h). For a full list of the netlink message header types that were added by the
rtnelink family with detailed explanation on each, see: man 7 rtnetlink. Note that
message type values smaller than NLMSG_MIN_TYPE (0x10) are reserved for control
messages and may not be used.

•฀ nlmsg_flags field can be as follows:

NLM_F_REQUEST: When it’s a request message.•฀

NLM_F_MULTI: When it’s a multipart message. Multipart messages are used for table •฀
dumps. Usually the size of messages is limited to a page (PAGE_SIZE). So large
messages are divided into smaller ones, and each of them (except the last one) has the
NLM_F_MULTI flag set. The last message has the NLMSG_DONE flag set.

NLM_F_ACK: When you want the receiver of the message to reply with ACK. Netlink ACK •฀
messages are sent by the netlink_ack() method (net/netlink/af_netlink.c).

NLM_F_DUMP: Retrieve information about a table/entry.•฀

NLM_F_ROOT: Specify the tree root.•฀

NLM_F_MATCH: Return all matching entries.•฀

NLM_F_ATOMIC: This flag is deprecated.•฀

The following flags are modifiers for creation of an entry:

NLM_F_REPLACE: Override existing entry.•฀

NLM_F_EXCL: Do not touch entry, if it exists.•฀

NLM_F_CREATE: Create entry, if it does not exist.•฀

CHAPTER 2 ■ NETLINK SOCKETS

21

NLM_F_APPEND: Add entry to end of list.•฀

NLM_F_ECHO: Echo this request.•฀

I’ve shown the most commonly used flags. For a full list, see
include/uapi/linux/netlink.h.

•฀ nlmsg_seq is the sequence number (for message sequences). Unlike some Layer 4 transport
protocols, there is no strict enforcement of the sequence number.

•฀ nlmsg_pid is the sending port id. When a message is sent from the kernel, the nlmsg_pid is 0.
When a message is sent from userspace, the nlmsg_pid can be set to be the process id of that
userspace application which sent the message.

Figure 2-3 shows the netlink message header.

Figure 2-3. nlmsg header

After the header comes the payload. The payload of netlink messages is composed
of a set of attributes which are represented in Type-Length-Value (TLV) format. With
TLV, the type and length are fixed in size (typically 1–4 bytes), and the value field is of
variable size. The TLV representation is used also in other places in the networking
code—for example, in IPv6 (see RFC 2460). TLV provides flexibility which makes
future extensions easier to implement. Attributes can be nested, which enables
complex tree structures of attributes.

Each netlink attribute header is defined by struct nlattr:

struct nlattr {
 __u16 nla_len;
 __u16 nla_type;
};
(include/uapi/linux/netlink.h)

•฀ nla_len: The size of the attribute in bytes.

•฀ nla_type: The attribute type. The value of nla_type can be, for example, NLA_U32
(for a 32-bit unsigned integer), NLA_STRING for a variable length string, NLA_NESTED for a
nested attribute, NLA_UNSPEC for arbitrary type and length, and more. You can find the list of
available types in include/net/netlink.h.

CHAPTER 2 ■ NETLINK SOCKETS

22

Every netlink attribute must be aligned by a 4-byte boundary (NLA_ALIGNTO).
Each family can define an attribute validation policy, which represents the expectations regarding the received

attributes. This validation policy is represented by the nla_policy object. In fact, the nla_policy struct has exactly
the same content as struct nlattr:

 struct nla_policy {
 u16 type;
 u16 len;
};
(include/uapi/linux/netlink.h)

The attribute validation policy is an array of nla_policy objects; this array is indexed by the attribute number. For
each attribute (except the fixed-length attributes), if the value of len in the nla_policy object is 0, no validation should
be performed. If the attribute is one of the string types (such as NLA_STRING), len should be the maximum length of the
string, without the terminating NULL byte. If the attribute type is NLA_UNSPEC or unknown, len should be set to the
exact length of the attribute's payload. If the attribute type is NLA_FLAG, len is unused. (The reason is that the presence
of the attribute itself implies a value of true, and the absence of the attribute implies a value of false).

Receiving a generic netlink message in the kernel is handled by genl_rcv_msg(). In case it is a dump request
(when the NLM_F_DUMP flag is set), you dump the table by calling the netlink_dump_start() method. If it’s not a
dump request, you parse the payload by the nlmsg_parse() method. The nlmsg_parse() method performs attribute
validation by calling validate_nla() (lib/nlattr.c). If there are attributes with a type exceeding maxtype, they
will be silently ignored for backwards compatibility. In case validation fails, you don’t continue to the next step in
genl_rcv_msg() (which is running the doit() callback), and the genl_rcv_msg() returns an error code.

The next section describes the NETLINK_ROUTE messages, which are the most commonly used messages in the
networking subsystem.

NETLINK_ROUTE Messages
The rtnetlink (NETLINK_ROUTE) messages are not limited to the networking routing subsystem: there are
neighbouring subsystem messages as well, interface setup messages, firewalling message, netlink queuing messages,
policy routing messages, and many other types of rtnetlink messages, as you’ll see in later chapters.

The NETLINK_ROUTE messages can be divided into families:

LINK (network interfaces)•฀

ADDR (network addresses)•฀

ROUTE (routing messages)•฀

NEIGH (neighbouring subsystem messages)•฀

RULE (policy routing rules)•฀

QDISC (queueing discipline)•฀

TCLASS (traffic classes)•฀

ACTION (packet action API, see •฀ net/sched/act_api.c)

NEIGHTBL (neighbouring table)•฀

ADDRLABEL (address labeling)•฀

CHAPTER 2 ■ NETLINK SOCKETS

23

Each of these families has three types of messages: for creation, deletion, and retrieving information. So, for
routing messages, you have the RTM_NEWROUTE message type for creating a route, the RTM_DELROUTE message
type for deleting a route, and the RTM_GETROUTE message type for retrieving a route. With LINK messages there is,
apart from the three methods for creation, deletion and information retrieval, an additional message for modifying a
link: RTM_SETLINK.

There are cases in which an error occurs, and you send an error message as a reply. The netlink error message is
represented by the nlmsgerr struct:

struct nlmsgerr {
 int error;
 struct nlmsghdr msg;
};
(include/uapi/linux/netlink.h)

In fact, as you can see in Figure 2-4, the netlink error message is built from a netlink message header and an
error code. When the error code is not 0, the netlink message header of the original request which caused the error is
appended after the error code field.

Figure 2-4. Netlink error message

If you send a message that was constructed erroneously (for example, the nlmsg_type is not valid) then a netlink
error message is sent back, and the error code is set according to the error that occurred. For example, when the
nlmsg_type is not valid (a negative value, or a value higher than the maximum value permitted) the error code is set
to –EOPNOTSUPP. See the rtnetlink_rcv_msg() method in net/core/rtnetlink.c. In error messages, the sequence
number is set to be the sequence number of the request that caused the error.

The sender can request to get an ACK for a netlink message. This is done by setting the netlink message header
type (nlmsg_type) to be NLM_F_ACK. When the kernel sends an ACK, it uses an error message (the netlink message
header type of this message is set to be NLMSG_ERROR) with an error code of 0. In this case, the original netlink
header of the request is not appended to the error message. For implementation details, see the netlink_ack()
method implementation in net/netlink/af_netlink.c.

After learning about NETLINK_ROUTE messages, you’re ready to look at an example of adding and deleting a
routing entry in a routing table using NETLINK_ROUTE messages.

CHAPTER 2 ■ NETLINK SOCKETS

24

Adding and Deleting a Routing Entry in a Routing Table
Behind the scenes, let’s see what happens in the kernel in the context of netlink protocol when adding and deleting a
routing entry. You can add a routing entry to the routing table by running, for example, the following:

ip route add 192.168.2.11 via 192.168.2.20

This command sends a netlink message from userspace (RTM_NEWROUTE) over an rtnetlink socket for adding
a routing entry. The message is received by the rtnetlink kernel socket and handled by the rtnetlink_rcv() method.
Eventually, adding the routing entry is done by invoking inet_rtm_newroute() in net/ipv4/fib_frontend.c.
Subsequently, insertion into the Forwarding Information Base (FIB), which is the routing database, is accomplished with
the fib_table_insert() method; however, inserting into the routing table is not the only task of fib_table_insert().
You should notify all listeners who performed registration for RTM_NEWROUTE messages. How? When inserting a new
routing entry, you call the rtmsg_fib() method with RTM_NEWROUTE. The rtmsg_fib() method builds a netlink
message and sends it by calling rtnl_notify() to notify all listeners who are registered to the RTNLGRP_IPV4_ROUTE
group. These RTNLGRP_IPV4_ROUTE listeners can be registered in the kernel as well as in userspace (as is done in
iproute2, or in some userspace routing daemons, like xorp). You’ll see shortly how userspace daemons of iproute2 can
subscribe to various rtnelink multicast groups.

When deleting a routing entry, something quite similar happens. You can delete the routing entry earlier by
running the following:

ip route del 192.168.2.11

That command sends a netlink message from userspace (RTM_DELROUTE) over an rtnetlink socket for deleting
a routing entry. The message is again received by the rtnetlink kernel socket and handled by the rtnetlink_rcv()
callback. Eventually, deleting the routing entry is done by invoking inet_rtm_delroute() callback in net/ipv4/
fib_frontend.c. Subsequently, deletion from the FIB is done with fib_table_delete(), which calls rtmsg_fib(),
this time with the RTM_DELROUTE message.

You can monitor networking events with iproute2 ip command like this:

ip monitor route

For example, if you open one terminal and run ip monitor route there, and then open another terminal and
run ip route add 192.168.1.10 via 192.168.2.200, on the first terminal you’ll see this line: 192.168.1.10 via
192.168.2.200 dev em1. And when you run, on the second terminal, ip route del 192.168.1.10, on the first
terminal the following text will appear: Deleted 192.168.1.10 via 192.168.2.200 dev em1.

Running ip monitor route runs a daemon that opens a netlink socket and subscribes to the RTNLGRP_IPV4_ROUTE
multicast group. Now, adding/deleting a route, as done in this example, will result in this: the message that was sent with
rtnl_notify() will be received by the daemon and displayed on the terminal.

You can subscribe to other multicast groups in this way. For example, to subscribe to the RTNLGRP_LINK multicast
group, run ip monitor link. This daemon receives netlink messages from the kernel—when adding/deleting a link,
for example. So if you open one terminal and run ip monitor link, and then open another terminal and add a VLAN
interface by vconfig add eth1 200, on the first terminal you’ll see lines like this:

4: eth1.200@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
 link/ether 00:e0:4c:53:44:58 brd ff:ff:ff:ff:ff:ff

CHAPTER 2 ■ NETLINK SOCKETS

25

And if you will add a bridge on the second terminal by brctl addbr mybr, on the first terminal you’ll see lines
like this:

5: mybr: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
 link/ether a2:7c:be:62:b5:b6 brd ff:ff:ff:ff:ff:ff

You’ve seen what a netlink message is and how it is created and handled. You’ve seen how netlink sockets are
handled. Next you’ll learn why the generic netlink family (introduced in kernel 2.6.15) was created, and you’ll learn
about its Linux implementation.

Generic Netlink Protocol
One of the drawbacks of the netlink protocol is that the number of protocol families is limited to 32 (MAX_LINKS).
This is one of the main reasons that the generic netlink family was created—to provide support for adding a higher
number of families. It acts as a netlink multiplexer and works with a single netlink family (NETLINK_GENERIC). The
generic netlink protocol is based on the netlink protocol and uses its API.

To add a netlink protocol family, you should add a protocol family definition in include/linux/netlink.h. But
with generic netlink protocol, there is no need for that. The generic netlink protocol is also intended to be used in
other subsystems besides networking, because it provides a general purpose communication channel. For example,
it’s used also by the acpi subsystem (see the definition of acpi_event_genl_family in drivers/acpi/event.c), by the
task stats code (see kernel/taskstats.c), by the thermal events code, and more.

The generic netlink kernel socket is created by the netlink_kernel_create() method like this:

static int __net_init genl_pernet_init(struct net *net) {
 ..
 struct netlink_kernel_cfg cfg = {
 .input = genl_rcv,
 .cb_mutex = &genl_mutex,
 .flags = NL_CFG_F_NONROOT_RECV,
 };
 net->genl_sock = netlink_kernel_create(net, NETLINK_GENERIC, &cfg);
 ...
 }
(net/netlink/genetlink.c)

Note that, like the netlink sockets described earlier, the generic netlink socket is also aware of network
namespaces; the network namespace object (struct net) contains a member named genl_sock (a generic netlink
socket). As you can see, the network namespace genl_sock pointer is assigned in the genl_pernet_init() method.

The genl_rcv() method is defined to be the input callback of the genl_sock object, which was created earlier by
the genl_pernet_init() method. As a result, data sent from userspace over generic netlink sockets is handled in the
kernel by the genl_rcv() callback.

You can create a generic netlink userspace socket with the socket() system call, though it is better to use the
libnl-genl API (discussed later in this section).

Immediately after creating the generic netlink kernel socket, register the controller family (genl_ctrl):

static struct genl_family genl_ctrl = {
 .id = GENL_ID_CTRL,
 .name = "nlctrl",

CHAPTER 2 ■ NETLINK SOCKETS

26

 .version = 0x2,
 .maxattr = CTRL_ATTR_MAX,
 .netnsok = true,
};

static int __net_init genl_pernet_init(struct net *net) {
...
err = genl_register_family_with_ops(&genl_ctrl, &genl_ctrl_ops, 1)
...

The genl_ctrl has a fixed id of 0x10 (GENL_ID_CTRL); it is in fact the only instance of genl_family that’s
initialized with a fixed id; all other instances are initialized with GENL_ID_GENERATE as an id, which subsequently is
replaced by a dynamically assigned value.

There is support for registering multicast groups in generic netlink sockets by defining a genl_multicast_group
object and calling genl_register_mc_group(); for example, in the Near Field Communication (NFC) subsystem,
you have the following:

static struct genl_multicast_group nfc_genl_event_mcgrp = {
 .name = NFC_GENL_MCAST_EVENT_NAME,
 };

int __init nfc_genl_init(void)
{
...
 rc = genl_register_mc_group(&nfc_genl_family, &nfc_genl_event_mcgrp);
...
}
(net/nfc/netlink.c)

The name of a multicast group should be unique, because it is the primary key for lookups.
In the multicast group, the id is also generated dynamically when registering a multicast group by calling the

find_first_zero_bit() method in genl_register_mc_group(). There is only one multicast group, the notify_grp,
that has a fixed id, GENL_ID_CTRL.

To work with generic netlink sockets in the kernel, you should do the following:

Create a •฀ genl_family object and register it by calling genl_register_family().

Create a •฀ genl_ops object and register it by calling genl_register_ops().

Alternatively, you can call genl_register_family_with_ops() and pass to it a genl_family object, an array of
genl_ops, and its size. This method will first call genl_register_family() and then, if successful, will call
genl_register_ops() for each genl_ops element of the specified array of genl_ops.

The genl_register_family() and genl_register_ops() as well as the genl_family and genl_ops are defined
in include/net/genetlink.h.

The wireless subsystem uses generic netlink sockets:

int nl80211_init(void)
{
 int err;

CHAPTER 2 ■ NETLINK SOCKETS

27

 err = genl_register_family_with_ops(&nl80211_fam,
 nl80211_ops, ARRAY_SIZE(nl80211_ops));
...
}
(net/wireless/nl80211.c)

The generic netlink protocol is used by some userspace packages, such as the hostapd package and the iw
package. The hostapd package (http://hostap.epitest.fi) provides a userspace daemon for wireless access
point and authentication servers. The iw package is for manipulating wireless devices and their configuration
(see http://wireless.kernel.org/en/users/Documentation/iw).

The iw package is based on nl80211 and the libnl library. Chapter 12 discusses nl80211 in more detail. The old
userspace wireless package is called wireless-tools and is based on sending IOCTLs.

Here are the genl_family and genl_ops definitions in nl80211:

static struct genl_family nl80211_fam = {
 .id = GENL_ID_GENERATE, /* don't bother with a hardcoded ID */
 .name = "nl80211", /* have users key off the name instead */
 .hdrsize = 0, /* no private header */
 .version = 1, /* no particular meaning now */
 .maxattr = NL80211_ATTR_MAX,
 .netnsok = true,
 .pre_doit = nl80211_pre_doit,
 .post_doit = nl80211_post_doit,
};

•฀ name: Must be a unique name.

•฀ id: id is GENL_ID_GENERATE in this case, which is in fact 0. GENL_ID_GENERATE tells the
generic netlink controller to assign the channel a unique channel number when you register
the family with genl_register_family(). The genl_register_family() assigns an id in the
range 16 (GENL_MIN_ID, which is 0x10) to 1023 (GENL_MAX_ID).

•฀ hdrsize: Size of a private header.

•฀ maxattr: NL80211_ATTR_MAX, which is the maximum number of attributes supported.

The nl80211_policy validation policy array has NL80211_ATTR_MAX elements (each
attribute has an entry in the array):

•฀ netnsok: true, which means the family can handle network namespaces.

•฀ pre_doit: A hook that’s called before the doit() callback.

•฀ post_doit: A hook that can, for example, undo locking or any required private tasks after the
doit() callback.

You can add a command or several commands with the genl_ops structure. Let’s take a
look at the definition of genl_ops struct and then at its usage in nl80211:

struct genl_ops {
 u8 cmd;
 u8 internal_flags;
 unsigned int flags;
 const struct nla_policy *policy;
 int (*doit)(struct sk_buff *skb,

http://hostap.epitest.fi/
http://wireless.kernel.org/en/users/Documentation/iw

CHAPTER 2 ■ NETLINK SOCKETS

28

 struct genl_info *info);
 int (*dumpit)(struct sk_buff *skb,
 struct netlink_callback *cb);
 int (*done)(struct netlink_callback *cb);
 struct list_head ops_list;
};

•฀ cmd: Command identifier (the genl_ops struct defines a single command and its
doit/dumpit handlers).

•฀ internal_flags: Private flags which are defined and used by the family. For example,
in nl80211, there are many operations that define internal flags (such as NL80211_FLAG_
NEED_NETDEV_UP, NL80211_FLAG_NEED_RTNL, and more). The nl80211 pre_doit() and
post_doit() callbacks perform actions according to these flags. See net/wireless/nl80211.

•฀ flags: Operation flags. Values can be the following:

GENL_ADMIN_PERM: When this flag is set, it means that the operation requires the •฀
CAP_NET_ADMIN privilege; see the genl_rcv_msg() method in net/netlink/genetlink.c.

GENL_CMD_CAP_DO: This flag is set if the •฀ genl_ops struct implements the doit()
callback.

GENL_CMD_CAP_DUMP: This flag is set if the •฀ genl_ops struct implements the
dumpit() callback.

GENL_CMD_CAP_HASPOL: This flag is set if the •฀ genl_ops struct defines attribute
validation policy (nla_policy array).

•฀ policy : Attribute validation policy is discussed later in this section when describing the
payload.

•฀ doit: Standard command callback.

•฀ dumpit: Callback for dumping.

•฀ done: Completion callback for dumps.

•฀ ops_list: Operations list.

static struct genl_ops nl80211_ops[] = {
 {

 ...
 {
 .cmd = NL80211_CMD_GET_SCAN,
 .policy = nl80211_policy,
 .dumpit = nl80211_dump_scan,
 },
 ...
}

Note that either a doit or a dumpit callback must be specified for every element of genl_ops (nl80211_ops in
this case) or the function will fail with -EINVAL.

CHAPTER 2 ■ NETLINK SOCKETS

29

This entry in genl_ops adds the nl80211_dump_scan() callback as a handler of the NL80211_CMD_GET_SCAN
command. The nl80211_policy is an array of nla_policy objects and defines the expected datatype of the attributes
and their length.

When running a scan command from userspace, for example by iw dev wlan0 scan, you send from userspace a
generic netlink message whose command is NL80211_CMD_GET_SCAN over a generic netlink socket. Messages are
sent by the nl_send_auto_complete() method or by nl_send_auto() in the newer libnl versions. nl_send_auto()
fills the missing bits and pieces in the netlink message header. If you don’t require any of the automatic message
completion functionality, you can use nl_send() directly.

The message is handled by the nl80211_dump_scan() method, which is the dumpit callback for this command
(net/wireless/nl80211.c). There are more than 50 entries in the nl80211_ops object for handling commands,
including NL80211_CMD_GET_INTERFACE, NL80211_CMD_SET_INTERFACE, NL80211_CMD_START_AP, and so on.

To send commands to the kernel, a userspace application should know the family id. The family name is known
in the userspace, but the family id is unknown in the userspace because it’s determined only in runtime in the kernel.
To get the family id, the userspace application should send a generic netlink CTRL_CMD_GETFAMILY request to the
kernel. This request is handled by the ctrl_getfamily() method. It returns the family id as well as other information,
such as the operations the family supports. Then the userspace can send commands to the kernel specifying the
family id that it got in the reply. I discuss this more in the next section.

Creating and Sending Generic Netlink Messages
A generic netlink message starts with a netlink header, followed by the generic netlink message header, and then there
is an optional user specific header. Only after all that do you find the optional payload, as you can see in Figure 2-5.

Figure 2-5. Generic netlink message.

This is the generic netlink message header:

struct genlmsghdr {
 __u8 cmd;
 __u8 version;
 __u16 reserved;
};
(include/uapi/linux/genetlink.h)

CHAPTER 2 ■ NETLINK SOCKETS

30

•฀ cmd is a generic netlink message type; each generic family that you register adds its own
commands. For example, for the nl80211_fam family mentioned above, the commands it adds
(like NL80211_CMD_GET_INTERFACE) are represented by the nl80211_commands enum.
There are more than 60 commands (see include/linux/nl80211.h).

•฀ version can be used for versioning support. With nl80211 it is 1, with no particular meaning.
The version member allows changing the format of a message without breaking backward
compatibility.

•฀ reserved is for future use.

Allocating a buffer for a generic netlink message is done by the following method:

sk_buff *genlmsg_new(size_t payload, gfp_t flags)

This is in fact a wrapper around nlmsg_new().
After allocating a buffer with genlmsg_new(), the genlmsg_put() is called to create the generic netlink header,

which is an instance of genlmsghdr. You send a unicast generic netlink message with genlmsg_unicast(), which is in
fact a wrapper around nlmsg_unicast(). You can send a multicast generic netlink message in two ways:

•฀ genlmsg_multicast(): This method sends the message to the default network namespace,
net_init.

•฀ genlmsg_multicast_allns(): This method sends the message to all network namespaces.

(All prototypes of the methods mentioned in this section are in include/net/genetlink.h.)
You can create a generic netlink socket from userspace like this: socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);

this call is handled in the kernel by the netlink_create() method, like an ordinary, non-generic netlink socket, as you
saw in the previous section. You can use the socket API to perform further calls like bind() and sendmsg() or recvmsg();
however, using the libnl library instead is recommended.

libnl-genl provides generic netlink API, for management of controller, family, and command registration.
With libnl-genl, you can call genl_connect() to create a local socket file descriptor and bind the socket to the
NETLINK_GENERIC netlink protocol.

Let’s take a brief look at what happens in a short typical userspace-kernel session when sending a command to
the kernel via generic netlink sockets using the libnl library and the libnl-genl library.

The iw package uses the libnl-genl library. When you run a command like iw dev wlan0 list, the following
sequence occurs (omitting unimportant details):

state->nl_sock = nl_socket_alloc()

Allocate a socket (note the use here of libnl core API and not the generic netlink family (libnl-genl) yet.

genl_connect(state->nl_sock)

Call socket() with NETLINK_GENERIC and call bind() on this socket; the genl_connect() is a method of the
libnl-genl library.

genl_ctrl_resolve(state->nl_sock, "nl80211");

This method resolves the generic netlink family name ("nl80211") to the corresponding numeric family
identifier. The userspace application must send its subsequent messages to the kernel, specifying this id.

The genl_ctrl_resolve() method calls genl_ctrl_probe_by_name(), which in fact sends a generic netlink
message to the kernel with the CTRL_CMD_GETFAMILY command.

CHAPTER 2 ■ NETLINK SOCKETS

31

In the kernel, the generic netlink controller ("nlctrl") handles the CTRL_CMD_GETFAMILY command by the
ctrl_getfamily() method and returns the family id to userspace. This id was generated when the socket was created.

Note ■ You can get various parameters (such as generated id, header size, max attributes, and more) of all the

 registered generic netlink families with the userspace tool genl (of iproute2) by running genl ctrl list.

You’re now ready to learn about the socket monitoring interface, which lets you get information about sockets.
The socket monitoring interface is used in userspace tools like ss, which displays socket information and statistics for
various socket types, and in other projects, as you’ll see in the next section.

Socket Monitoring Interface
The sock_diag netlink sockets provide a netlink-based subsystem that can be used to get information about sockets. This
feature was added to the kernel to support checkpoint/restore functionality for Linux in userspace (CRIU). To support this
functionality, additional data about sockets was needed. For example, /procfs doesn’t say which are the peers of a UNIX
domain socket (AF_UNIX), and this info is needed for checkpoint/restore support. This additional data is not exported via
/proc, and to make changes to procfs entries isn’t always desirable because it might break userspace applications. The
sock_diag netlink sockets give an API which enables access to this additional data. This API is used in the CRIU project as
well as in the ss util. Without the sock_diag, after checkpointing a process (saving the state of a process to the filesystem),
you can’t reconstruct its UNIX domain sockets because you don’t know who the peers are.

To support the monitoring interface used by the ss tool, a netlink-based kernel socket is created
(NETLINK_SOCK_DIAG). The ss tool, which is part of the iproute2 package, enables you to get socket statistics
in a similar way to netstat. It can display more TCP and state information than other tools.

You create a netlink kernel socket for sock_diag like this:

static int __net_init diag_net_init(struct net *net)
{
 struct netlink_kernel_cfg cfg = {
 .input = sock_diag_rcv,
 };

 net->diag_nlsk = netlink_kernel_create(net, NETLINK_SOCK_DIAG, &cfg);
 return net->diag_nlsk == NULL ? -ENOMEM : 0;
}
(net/core/sock_diag.c)

The sock_diag module has a table of sock_diag_handler objects named sock_diag_handlers. This table is
indexed by the protocol number (for the list of protocol numbers, see include/linux/socket.h).

The sock_diag_handler struct is very simple:

struct sock_diag_handler {
__u8 family;
int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh);
};
(net/core/sock_diag.c)

CHAPTER 2 ■ NETLINK SOCKETS

32

Each protocol that wants to add a socket monitoring interface entry to this table first defines a handler and then
calls sock_diag_register(), specifying its handler. For example, for UNIX sockets, there is the following in
net/unix/diag.c:

The first step is definition of the handler:

static const struct sock_diag_handler unix_diag_handler = {
 .family = AF_UNIX,
 .dump = unix_diag_handler_dump,
};

The second step is registration of the handler:

static int __init unix_diag_init(void)
{
 return sock_diag_register(&unix_diag_handler);
}

Now, with ss –x or ss --unix, you can dump the statistics that are gathered by the UNIX diag module. In quite
a similar way, there are diag modules for other protocols, such as UDP (net/ipv4/udp_diag.c), TCP (net/ipv4/
tcp_diag.c), DCCP (/net/dccp/diag.c), and AF_PACKET (net/packet/diag.c).

There’s also a diag module for the netlink sockets themselves. The /proc/net/netlink entry provides
information about the netlink socket (netlink_sock object) like the portid, groups, the inode number of the socket,
and more. If you want the details, dumping /proc/net/netlink is handled by netlink_seq_show() in net/netlink/
af_netlink.c. There are some netlink_sock fields which /proc/net/netlink doesn’t provide—for example,
dst_group or dst_portid or groups above 32. For this reason, the netlink socket monitoring interface was added
(net/netlink/diag.c). You should be able to use the ss tool of iproute2 to read netlink sockets information.
The netlink diag code can be built also as a kernel module.

Summary
This chapter covered netlink sockets, which provide a mechanism for bidirectional communication between the
userspace and the kernel and are widely used by the networking subsystem. You’ve seen some examples of netlink
sockets usage. I also discussed netlink messages, how they’re created and handled. Another important subject the
chapter dealt with is the generic netlink sockets, including their advantages and their usage. The next chapter covers
the ICMP protocol, including its usage and its implementation in IPv4 and IPv6.

Quick Reference

I conclude this chapter with a short list of important methods of the netlink and generic netlink subsystems. Some of
them were mentioned in this chapter:

int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nlmsghdr *))

This method handles receiving netlink messages. It’s called from the input callback of netlink families (for example,
in the rtnetlink_rcv() method for the rtnetlink family, or in the sock_diag_rcv() method for the sock_diag family.
The method performs sanity checks, like making sure that the length of the netlink message header does not exceed
the permitted max length (NLMSG_HDRLEN). It also avoids invoking the specified callback in case that the message
is a control message. In case the ACK flag (NLM_F_ACK) is set, it sends an error message by invoking the netlink_
ack() method.

CHAPTER 2 ■ NETLINK SOCKETS

33

struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,

u32 dst_portid, gfp_t gfp_mask)

This method allocates an SKB with the specified size and gfp_mask; the other parameters (ssk, dst_portid) are used
when working with memory mapped netlink IO (NETLINK_MMAP). This feature is not discussed in this chapter, and
is located here: net/netlink/af_netlink.c.

struct netlink_sock *nlk_sk(struct sock *sk)

This method returns the netlink_sock object, which has an sk as a member, and is located here:
net/netlink/af_netlink.h.

struct sock *netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg)

This method creates a kernel netlink socket.

struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb)

This method returns the netlink message header pointed to by skb->data.

struct nlmsghdr *__nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq,

int type, int len, int flags)

This method builds a netlink message header according to the specified parameters, and puts it in the skb, and is
located here: include/linux/netlink.h.

struct sk_buff *nlmsg_new(size_t payload, gfp_t flags)

This method allocates a new netlink message with the specified message payload by calling alloc_skb(). If the
specified payload is 0, alloc_skb() is called with NLMSG_HDRLEN (after alignment with the NLMSG_ALIGN macro).

int nlmsg_msg_size(int payload)

This method returns the length of a netlink message (message header length and payload), not including padding.

void rtnl_register(int protocol, int msgtype, rtnl_doit_func doit,

rtnl_dumpit_func dumpit, rtnl_calcit_func calcit)

This method registers the specified rtnetlink message type with the three specified callbacks.

static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)

This method processes an rtnetlink message.

CHAPTER 2 ■ NETLINK SOCKETS

34

static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev, int type, u32 pid,

u32 seq, u32 change, unsigned int flags, u32 ext_filter_mask)

This method creates two objects: a netlink message header (nlmsghdr) and an ifinfomsg object, located immediately
after the netlink message header.

void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group, struct
nlmsghdr *nlh, gfp_t flags)

This method sends an rtnetlink message.

int genl_register_mc_group(struct genl_family *family,

struct genl_multicast_group *grp)

This method registers the specified multicast group, notifies the userspace, and returns 0 on success or a negative
error code. The specified multicast group must have a name. The multicast group id is generated dynamically in this
method by the find_first_zero_bit() method for all multicast groups, except for notify_grp, which has a fixed id
of 0x10 (GENL_ID_CTRL).

void genl_unregister_mc_group(struct genl_family *family,

struct genl_multicast_group *grp)

This method unregisters the specified multicast group and notifies the userspace about it. All current listeners
on the group are removed. It’s not necessary to unregister all multicast groups before unregistering the family—
unregistering the family causes all assigned multicast groups to be unregistered automatically.

int genl_register_ops(struct genl_family *family, struct genl_ops *ops)

This method registers the specified operations and assigns them to the specified family. Either a doit() or a dumpit()
callback must be specified or the operation will fail with -EINVAL. Only one operation structure per command
identifier may be registered. It returns 0 on success or a negative error code.

int genl_unregister_ops(struct genl_family *family, struct genl_ops *ops)

This method unregisters the specified operations and unassigns them from the specified family. The operation blocks
until the current message processing has finished and doesn't start again until the unregister process has finished.
It’s not necessary to unregister all operations before unregistering the family—unregistering the family causes all
assigned operations to be unregistered automatically. It returns 0 on success or a negative error code.

int genl_register_family(struct genl_family *family)

This method registers the specified family after validating it first. Only one family may be registered with the same
family name or identifier. The family id may equal GENL_ID_GENERATE, causing a unique id to be automatically
generated and assigned.

CHAPTER 2 ■ NETLINK SOCKETS

35

int genl_register_family_with_ops(struct genl_family *family,

struct genl_ops *ops, size_t n_ops)

This method registers the specified family and operations. Only one family may be registered with the same family
name or identifier. The family id may equal GENL_ID_GENERATE, causing a unique id to be automatically generated
and assigned. Either a doit or a dumpit callback must be specified for every registered operation or the function
will fail. Only one operation structure per command identifier may be registered. This is equivalent to calling genl_
register_family() followed by genl_register_ops() for every operation entry in the table, taking care to unregister
the family on the error path. The method returns 0 on success or a negative error code.

int genl_unregister_family(struct genl_family *family)

This method unregisters the specified family and returns 0 on success or a negative error code.

void *genlmsg_put(struct sk_buff *skb, u32 portid, u32 seq,

struct genl_family *family, int flags, u8 cmd)

This method adds a generic netlink header to a netlink message.

int genl_register_family(struct genl_family *family) int genl_unregister_

family(struct genl_family *family)

This method registers/unregisters a generic netlink family.

int genl_register_ops(struct genl_family *family, struct genl_ops *ops) int genl_

unregister_ops(struct genl_family *family, struct genl_ops *ops)

This method registers/unregisters generic netlink operations.

void genl_lock(void)

void genl_unlock(void)

This method locks/unlocks the generic netlink mutex (genl_mutex). Used for example in net/l2tp/l2tp_netlink.c.

